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In this paper, our goal is to generalize the algebraic method presented in1–3

for searching the analytic solutions of the one-dimensional Schrödinger
equation to the two-dimensional case. As the simplest case, an example of
the analytic solution of the two-dimensional Schrödinger equation with
the fourth-order polynomial potential is presented.

The problem of the one-dimensional Schrödinger equation with the
fourth-order polynomial potential can be solved in different ways, see for
example4–8. An obvious method of solving the two-dimensional Schrödin-
ger equation is the separation of variables which is applicable in special
cases only. Another exact methods for solving the Schrödinger equation
with the two-dimensional fourth-order polynomial potential have been
presented in the framework of the non-Hermitian models9,10 or super-
symmetric models11. The two-dimensional fourth-order polynomial poten-
tial can also be solved using some approximate methods12–14.
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Our method represents a new algebraic approach, in which the
two-dimensional Schrödinger equation is solved without the separation of
variables and no symmetry of the problem is assumed.

First we summarize briefly the results of refs1–3. There, the solutions of
the one-dimensional Schrödinger equation

− + =d
d

2

2x
x V x x E xψ ψ ψ( ) ( ) ( ) ( ) (1)

was searched in the form of the linear combinations of the functions ψm

ψ ψ( ) ( )x c xm m
m

= ∑ (2)

where

ψ m
mx f x h x( ) ( ) ( )= . (3)

Here, f(x) is a given function and the function h(x) can be obtained from
the formula
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Coefficients hm can be found by the method described in2. The formula (4)
has been derived under very general assumptions and allows to find ground
state wave functions of all usual one-dimensional analytically solvable po-
tentials.

It has been proved in2 that to obtain analytic solutions, the potential V
must have the form

V x V f xm
m

m

( ) ( )= ∑ (5)

and the function h(x) is the ground-state wave function. Using this ap-
proach, it is possible to take different forms of the function f(x) and to test
whether the Schrödinger equation with the potential V of the form (5) has
analytical solutions obeying the corresponding boundary condition.
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Now we will discuss generalization of this approach to the two-
dimensional case.

GENERALIZATION TO TWO-DIMENSIONAL CASE

Few generalizations of Eqs (2)–(3) to two dimensions have been examined.
Successful approach is to assume the solutions of the Schrödinger equation

− + =∆ψ ψ ψ( , ) ( , ) ( , ) ( , )x y V x y x y E x y (6)

where ∆ = +∂
∂

∂
∂

2

2

2

2x y
in the form

ψ ψ( , ) ( , )
,

x y c x ymn mn
m n

= ∑ (7)

where

ψ mn
m nx y f x g y h x y( , ) ( ) ( ) ( , )= . (8)

Here, the functions f(x), g(y) and h(x,y) have an analogous meaning as the
functions f(x) and h(x) in Eqs (2)–(3).

Analogously to Eq. (5), it is assumed that the potential has the form

V x y V f x g ymn
m n

m n

( , ) ( ) ( )
,

= ∑ . (9)

BOUND STATES FOR TWO-DIMENSIONAL FOURTH-ORDER
POLYNOMIAL POTENTIAL

In this paper, we discuss only the simplest case f(x) = x and g(y) = y, i.e. the
potential V is assumed in the form of a polynomial in the variables x and y
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Here, we denoted W V W V40 40 04 04≡ ≡, , where we assume V40 > 0 and
V04 > 0 which are necessary conditions for the existence of the bound
states. The potential (10) can represent important physical potentials: cou-
pled anharmonic oscillators, two-dimensional double-well problem and
generalizations of these problems. In chemical physics, such potentials are
important for example for description of the highly non-linear vibrational
problems of nonrigid molecules. We note that the coupling terms propor-
tional to x3y, xy3, x2y2, x2y, xy2 and xy prevent separation of the two-
dimensional problem with the potential (10) to two independent one-
dimensional problems. Therefore, the usual method based on separation of
variables is not applicable here.

We have not found generalization of the formula (4) to two-dimensions.
For this reason, another method of searching for the function h(x,y) is used.
It is known from1–3 that in the one-dimensional case, the polynomial
potentials lead to the function h(x) in form of the exponential of a poly-
nomial. Therefore, we assume the function h(x,y) in the form

h x y d f x g y d x ymn
m n

m n
mn

m n

m n

( , ) exp ( ) ( ) exp
, ,

= −

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




 (11)

where dmn are numerical coefficients to be found.

Ground States

By analogy with the one-dimensional case, it is assumed that the function
h(x,y) plays the role of the ground-state wave function. Substituting Eqs (11)
and (10) into Eq. (6) and comparing the terms of the same order, we get the
ground state energy

E d d d d= − − + +10
2

01
2

02 202 2 (12)

and a system of 14 equations for 9 unknown coefficients dij

W d d40
2

30
2

21
29= + (13)

W d d04
2

03
2

12
29= + (14)
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V d d d d31 30 21 21 1212 4= + (15)

V d d d d13 03 12 12 2112 4= + (16)

V d d d d d d22 30 12 12
2

21
2

21 036 4 4 6= + + + (17)

V d d d d30 20 30 11 2112 2= + (18)

V d d d d03 02 03 11 1212 2= + (19)

V d d d d d d d d21 21 02 20 21 30 11 11 124 8 6 4= + + + (20)

V d d d d d d d d12 12 20 02 12 03 11 11 214 8 6 4= + + + (21)

V d d d d d d20 01 21 11
2

20
2

10 302 4 6= + + + (22)

V d d d d d d02 10 12 11
2

02
2

01 032 4 6= + + + (23)

V d d d d d d d d11 01 12 11 02 20 11 10 214 4 4 4= + + + (24)

V d d d d d d10 10 20 30 01 11 124 6 2 2= − + − (25)

V d d d d d d01 01 02 03 10 11 214 6 2 2= − + − (26)

It is seen also that all coefficients dij, where i + j > 3 must equal zero. As in
the one-dimensional case3, the system of Eqs (13)–(26) is solvable only for
certain values of the potential coefficients Vmn.

To get the function ψ0 quadratically integrable in the whole plane (x,y),
a similar method as in3 is used. The function h and the potential V are
modified to the form depending on |x| and |y|
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| | | | | |)
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+ + + y V x V y| | | | | .+ +10 01

(28)

In this case, the only problem is that the potential (28) and the wave func-
tion (27) have not continuous derivatives at the coordinate axes, as already
known from the one-dimensional case (see ref.3).

General discussion of the solutions of the system of Eqs (13)–(26) will be
published elsewhere. In this paper, only the simplest case V13 = V31 = 0 and
d21 = d12 = 0 will be discussed. In this case, Eqs (15)–(16) are fulfilled auto-
matically, Eq. (17) yields

V22 0= (29)

and Eqs (13)–(14) have the solution

d
W

30
40

3
= (30)

d
W

03
04

3
= . (31)

Here, to get d30 and d03 positive, the positive signs of the square roots are
taken. With this choice, the wave function (27) behaves as exp(–|x|3 – |y|3)
and is quadratically integrable in the whole plane (x,y).
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Now, the remaining system of Eqs (18)–(26) has a solution if and only if
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and its solution is

d
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W20
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404
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d
V
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044
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d
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11 2
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d
W V V V
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− −
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The potential satisfying all the conditions V31 = V13 = 0 and Eq. (29),
Eqs (32)–(35) can be in general written as

(41)
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where W40 and W04 are arbitrary positive real numbers and V30, V03, V20,
V02 and X are arbitrary real numbers. Substituting all formulas for the coef-
ficients dij, i.e. Eqs (30)–(31), (36)–(38) and (39)–(40) into Eqs (12) and (27)
we get the formula for the ground state wave function for the potential (41)
in the form
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40 3 04 3 30
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− 04
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(42)

The corresponding ground state energy reads

E
V

W

V

W

W V W X V

W

0
30

40
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04

40
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20 40
2 2

30
2 2

40
6

2 2
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64

= + −
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−
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.
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64
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It is seen that the resulting wave function (42) is quadratically integrable
in the whole plane (x,y). If X ≠ 0, the potential (41) contains three cross
terms (proportional to x2|y|, |x|y2 and |xy|) and, in general, it cannot be re-
duced to two independent one-dimensional potentials. Note that if X = 0,
i.e. if the coupling terms are absent, the potential (41) has the form of the
sum of two one-dimensional potentials discussed in3.

Excited States

Using the notation

p x y c x ym n
m n

m n

m n N

( , ) ,
,

=
=

+ ≤

∑
0

(44)

where cmn are coefficients to be found, Eq. (7) can be rewritten into the
form

ψ( , ) ( , ) ( , )x y p x y h x y= (45)

where h(x,y) = ψ0(x,y) is given by Eq. (42). Substituting Eq. (45) into Eq. (6)
we get

∆
∆

p
p
x

h
x h

p
y

h
y h

p
h

h
V E

+ +
+ = −

∂
∂

∂
∂

∂
∂

∂
∂

2 2

. (46)

In this equation, V and ∆h/h are polynomials in the variables x and y. For
this reason, the first fraction in Eq. (46) must be possible to modify to a
polynomial. Therefore, it must exist a polynomial a(x,y) satisfying the equa-
tion

∆p
p
x

h
x h

p
y

h
y h

pa+ + =∂
∂

∂
∂

∂
∂

∂
∂

2 2
. (47)

Calculating the orders of the polynomials and their derivatives in this equa-
tion, it can be shown that a must be a first-order polynomial for arbitrary N,
i.e. a must have a form

a x y a x a y a( , ) = + +10 01 00 . (48)
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Substituting Eqs (42), (44) for a given order N and Eq. (48) into Eq. (47)
and comparing the terms of the same order a system of equations for the
unknowns cij and aij is obtained. For N = 1, this system of equations has the
form

0 2 10 40 10 10= +c W c a (49)

0 2 01 04 01 01= +c W c a (50)

0 10 01 01 10= +c a c a (51)

0 10 30

40
01 10 00 00 10= + + +

c V

W
c X c a c a (52)

0 01 03

04
10 01 00 00 01= + + +

c V

W
c X c a c a (53)

0
4 4 4 4

30
2

10

40
3

03
2

01

04
3

2
10

40

2
01

04

2= + + + −
V c

W

V c

W

X c

W

X c

W

V 0 10

40

02 01

04

00 00

c

W

V c

W
c a− − . (54)

The system of Eqs (49)–(54) has a solution only if the condition

V V
W X V W V X

W

W X V W
20 02

04
2 2

30
2

04 30

40
2

40
2 2

03
23 2

8

3 2
− =

+ −
−

+ − 40 03

04
28

V X

W
(55)

is fulfilled. If this condition is fulfilled, the system of Eqs (49)–(54) has an
infinite number of solutions leading to the same potential and energy and
to physically equivalent wave functions differing by the normalization fac-
tor only. One of the solutions is
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p x y W x W y
W X V

W

W X V

W
( , ) = − +

−
−

−
40 04

40 03

04

04 30

404 4
(56)

a x y W x W y
X W

W

W

W

V

W
( , ) = − − + +









 − −2 2

2 240 04
40

04

04

40

30

40

V

W
03

042
. (57)

Formulas for the potential, wave function and energy of the excited state
are obtained by substituting Eqs (42) and (56) to Eqs (45)–(46). The result-
ing formulas are

(58)

V x y W x W y V x V y W Xx y W1 40
2 4

04
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3

40
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X V
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V

W
xy

W

| |
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+
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


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2
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3
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2

20 40
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30
2

40
48

4

8

V W X V

W
X

W V W X V

W

− −
+

− −
V W x

W V W X V

W
X

W

30 40
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20 40
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30
2

40
3

04

4

4

8

4

−








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+
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+
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02 04

2 2
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2

04
4 03 048
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V W X V
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V W y
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







 | |

and

ψ1 40 04
40 03

04

04 30

404 4
( , )x y W x W y

W X V

W

W X V

W
= − +

−
−

−







 ×

× − − − − −


exp | | | | | |
W

x
W

y
V

W
x

V

W
y

X
xy40 3 04 3 30

40

2 03

04

2

3 3 4 4 2
 −

−
− −

−
− −4

8

440
2

20 40
2 2

30
2

40
3

04
2

02 04
2 2W V W X V

W
x

W V W X V
| | 03

2

04
38W

y| |
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
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(59)
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E
V

W

V

W
X W

W

W

W

W V

1
30

40

03

04

40

04

04

40

40
2

20

2

4

= + − +






 −

−
−( W X V

W

W V W X V

W
40
2 2

30
2 2

40
6

04
2

02 04
2 2

03
2 2

04
664

4

64

−
−

− −) ( )
.

(60)

The formulas (58)–(60) are valid only if the condition (55) is fulfilled. It is
seen that the wave function (59) is quadratically integrable in the whole
plane (x,y).

Our analysis indicates that the appropriate system of equations has no so-
lution for N > 1.

It is seen that if X ≠ 0, the potential V1 cannot be in general transformed
into the sum of two independent one-dimensional potentials. Therefore,
there are analytic solutions of the two-dimensional Schrödinger equation
with the fourth-order polynomial potential that cannot be obtained by the
separation of variables.

Note that if X = 0, i.e. if the coupling terms are absent, the potential (41)
has the form of the sum of two one-dimensional potentials discussed in3.

CONCLUSIONS

In this paper, we have discussed analytic solutions of the two-dimensional
Schrödinger equation in cases when other known methods like the separa-
tion of variables are unusable. This problem appears to be rather difficult
and, for this reason, we have made several additional assumptions. For the
sake of generality, we have used the algebraic method of the solution of the
Schrödinger equation. The advantage of this approach is its generality not
relying on the special properties (like the symmetry, supersymmetry, etc.)
of the problem. Our method is generalization of the one-dimensional
approach used in1–3. It appears in analogy with the one-dimensional case
that the analytic solutions of the Schrödinger equation exist for the two-
dimensional fourth-order polynomial potentials only for certain values of
the potential coefficients. Analytic formulas for the wave functions and
energies of the ground state and one excited state have been found.

It has been shown that there exist analytic solutions of the two-
dimensional Schrödinger equation that cannot be obtained by the separa-
tion of the variables leading to two independent one-dimensional prob-
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lems. Generalization of the presented method to other types of potentials is
in progress.
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